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Abstract. It has become easy to calculate numerically selfenergy corrections in second-order 
perturbation theory In order to find out its capabilities and limitations. we analyse the we&- 
coupling approach for a system of one-dimensional correlated fermions. We compare the self- 
energy contributions due to different scattering processes of len- and right-moving particles 
which cm be mated analytically. We find that for Tomonaga-Luttinger processes second-order 
perturbation theory gives reliable results and show how deviations f” Fermi-liquid behaviour 
and the separation of spin- and charge-density excitnlions can be detected from the numerical 
data. Choosing the Hubbard model as a typical example we present numerical results for the 
selfenergy and the spectral density. Special attention is paid to the case without panicle-hole 
symmeuy. The insulating behaviour 3t half filling is outside the scape of the wedwoupling 
method applied. 

1. Introduction 

One of the main problems for electronic band structures is the understanding of correlation 
effects. For ordinary metals Fermi-liquid behaviour seems to be a correct description, which 
means that only the appearance of the Landau terms signals that a metal is not a system of 
non-interacting or free electrons. 

However, for a hypothetical one-dimensional model the free-electron description is 
invalid, a fermion system has no sharp Fermi surface and behaves as a Luttinger liquid 
if interaction is taken into account [l, 21. At present, it is not known if such a deviation 
from a Fermi liquid also occurs in two-dimensional metals. There are arguments for and 
against [3, 4, 51 and this is not of only academic interest since the copper oxide layers of 
high-temperature superconductors are realizations of such two-dimensional metals. 

The question we want to study is how perturbation theory can be used to find deviations 
from Fermi-liquid behaviour. Since it may be hard to extract information even in second 
order for such systems by analytic means we have analysed the perturbation expansion 
numerically instead. In the two-dimensional case such a study has been made by Rhodes 
and Jacobs 161. In the one-dimensional case analytic and numeric methods are both available 
and almost everything is known from the Bethe ansafz technique or bosonization of the 
fermionic states, We want to investigate the perturbation approach for the one-dimensional 
Hubbard model in order to find out its capabilities and its limitations. 

The Hubbard model was chosen since it is one of the simplest models with interacting 
fermions. Nevertheless, all typical scattering processes investigated separately in the theory 
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of the one-dimensional Fermi gas model are included. 
dimensional version is defined as, 

The Hamiltonian for its one- 

where the first term contains the nearest-neighbour hopping of fermions of spin U between 
the sites i and i t 1. The chemical potential is denoted as /.L and HU describes the on- 
site interaction between particles of the opposite spin. With the mean-field contributions 
subtracted it is 

where (ni,) is the mean-field average of the electron density for the site i and the spin label 
U =&, t. In the case of half filling or (n,,,) = 1/2 the chemical potential is zero (/.L = 0). 

The one-dimensional Hubbard model has been solved exactly by Lieb and Wu [7] using 
the Bethe ansac method. For the half-filled band or the particle-hole symmetrical case 
there is a gap in the density of states. Away from the symmetric case there is no gap 
and the one-dimensional Hubbard model behaves like a Tomonaga-Luttinger model [ I ] ,  for 
which the correlation functions exhibit a power-law behaviour. The momentum distribution 
n,, for the momenta p and the density of states p(w)  as a function of frequency w have the 
same power-law dependence for the arguments p - p f  or w as long as they are small. This 
is the typical property of a Luttinger liquid. The critical exponents and their dependence 
on band filling n and coupling constant U have been determined recently [8-12]. 

The standard perturbative approach [ 131 we want to analyse here expands the self-energy 
in orders of the coupling constant U .  The self-energy C and the single-particle propagator 
G are connected by Dyson's equation: 

1 
w t is - &, - Cp(w t is) 

G,(o t is) = (3) 

where the kinetic energy is given by ep = -cos p - p. The corresponding spectral density 
is defined as 

-n 

In order to detect deviations from Fermi-liquid behaviour it Is necessary to calculate C 
beyond the mean-field approximation linear in U .  

The analysis is restricted to second order in U. The starting point is classifying 
contributions from left- and right-moving particles. This technique is common for the 
investigation of the one-dimensional Fermi gas model [I] and has also become applicable 
recently to a two-dimensional system of interacting fermions with a square Fermi surface 
P I .  

In linearizing the cosine dispersion of the Hubbard model analytic results can be obtained 
for the self-energy. Making use of the classification scheme mentioned above we reduce 
the self-energy in second order to two different contributions. In this way we show in 
section 2 that the insulating behaviour at half filling-due to interaction processes with large 
momentum transfer-is not visible in second order. Contributions which should generate 
a gap are indistinguishable from contributions which would not. Comparing the numerical 
result for the Hubbard model with the analytic results, we show that the agreement is very 
good and that the numerical procedure based on the fast Fourier algorithm [I41 is stable 
and reliable. 
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The spectral density discussed in section 3 can only be calculated numerically. In 
special cases, in order to obtain a better understanding, we derive analytic expressions 
of the Green's function. We discuss the logarithmic corrections connected to the linear 
behaviour of ImC(o) for small w. They reflect the known power-law behaviour of the 
density of states: p(w) o( IwIu. The pole structure of the self-energy, already found and 
discussed in [4], gives the splitting in charge- and spin-density excitations. 

Perturbation theory does not automatically respect Luttinger's theorem [15] about the 
constancy of the particle number. By renormalizing the real part of the self-energy we show 
numerically in the density of states curves that this must be done properly. 

2. Self-energy in second order 

The retarded self-energy in second order is given by 

where F(t1 ,  t z ,  63) is the product of Fermi functions f (6) = [ l  + exp(,96)]-': 

F( t I ,  6% 6 3 )  = f(h)f(tN - f(63)) + (1 - f (ti)) (1  - f ( t 2 ) )  f ( t 3 )  (6) 
with w+ = w + io. The kinetic energy tP = -cosp - p also contains the chemical 
potential p. For numerical calculations it is much more convenient to start from a time- 
and position-dependent self-energy $'(I) and to use the 'fast Fourier' technique to get 
Cf)(o) 114, 16, 171. However, in order to test the validity of the numerical calculations 
and to have a better understanding of the results it is necessary to have some analytical results 
as well. For small Io[ and lpl and momenta close to the Fermi points the self-energy can 
be evaluated using (5).  

2.1. Classification of interaction processes 

The restriction to these small parameters means that classifying contributions of right- 
moving (at,,,lap > 0) and left-moving @.&.,lap c 0) particles makes sense. This means 
that instead of a single second-order self-energy diagram one has eight. In figure 1, following 
the traditional discussion, we name them C B  and SE for 'backscattering', CL and S' for 
'Luttinger', C" and Su for 'Umklapp' and CT and ST for 'Tomonaga'. They come in 
pairs since one diagram can be obtained from the other by permuting right and left lines. 

In the Hubbard model, where all coupling constants are chosen equal. the backscattering 
and the Luttinger contributions to the second-order self-energy are found to be equal, i. e., 

C,B(O+) = C,L(o') S,S(O+) = S,L(W+). (7) 
Since the unperturbed Green's functions are even functions of momentum, it is easy to 
see that a self-energy diagram remains unchanged if one interchanges two-particle l i e s  
(those with arrows to the right in figure 1). This way one gets relation (7). which reduces 
the number of diagrams to six. It also indicates a defect of the approximation: following 
the renormalization group treatment of the one-dimensional Fermi gas model [l], in the 
Hubbard model with attractive interaction (U < 0) the density of states opens a gap due 
to backscattering processes. Luttinger processes. however, yield the typical power-law 
behaviour mentioned above. In the repulsive case (U > O), which we are going to analyse 
here, the backscattering processes just reduce the critical exponents. Since the self-energies 
add-see further down equation (9)-the second-order approximation yields an exponent 
which is too large. 
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Figure 1. Contributions to $'(") with p > 0 for the one-dimensional Hubbard model. Solid 
and dashed lines correspond lo nght- and lefi-moving particles. respectively. 

Actually, only the C terms have to be considered, the S terms being negligible for 
small Io], I@l and momenta close to the Fermi points. Since we want the self-energy for 
small frequencies, only particles with small excitation energies and therefore momenta x p f  
for right-moving particles and x - p f  for left-moving particles give large contributions. 
Otherwise the denominator in expression (5) would never become small. Adding these 
internal momenta-forgetting the small deviation from the Fermi points-we obtain the 
Fermi momentum for the Tomonaga, Luttinger and backscattering diagrams, which is 
positive for the upper diagrams and negative for the lower ones in figure 1. For the 
timklapp diagram, Cu (S'), the momenta add up to -3pr (+3pf ) .  Since an timklapp 
momentum can be added, this is close to p f  ( - p f )  for small chemical potentials or small 
deviations from half filling of the band, where p f  N n/2. 

By definition, the sum of the internal momenta just gives p .  Thus, for a momentum 
p close to the Fermi point p,, the lower diagrams can be neglected, and the self-energy 
reduces to the sum of only four diagrams, two of them being identical. 

As we shall see, we just need to make calculations for two of them. To that end, consider 
what happens if we permute a particle-hole pair, that is, if we turn C L  into C". For small 
excitation energies and the nearly half-filled band, the particle to hole conversion can be 
done by reflecting the momentum around the nearest Fermi point, which in fact changes 
the sign of the energy. Keeping in mind that mainly small excitation energies contribute to 
the diagrams we get, after some manipulations (see figure 2), 

E,U(O+) CY C;*p,(w+). (8) 

This relation is exact for the half-filled band where p, = n/2. For repulsive interaction 
the Umklapp term, or more precisely the term in the Hamiltonian which generates it, is 
responsible for the opening of a gap in the half-filled case [ l ,  191. However, in equation (8) 
just an extra 4 p ~  appears as a misfit between Umklapp process and Fermi surface effects, 
which disables the generation of a gap. 

Putting all the contributions together, we have in second order for the self-energy of the 
Hubbard model 
~p'(o+) = z~: ,L (o+)  + zp  U +  (o ) + c,T(w+) +the  s terms 

(9) 
N C P &  T +  )+2C;(o+)+C;+4p,(o+). 

What remains to be done are the calculations of ET and EL. In order to proceed, one 
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Figure 2. Transformation from Pc to E’. 

linearizes the cosine dispersion around the Fermi momenta f p ~ ,  p f  = 7112 + p: 

F p ’ p = / l P l - P J  - j T c p < j T  (10) 

and continued periodically. We restrict our analysis to the nearly half-filled case (1p1 << I ) ,  
where deviations from the Fermi velocity U, = 1 can be neglected. This approximation 
gives useful results as long as momenta, frequencies and temperatures are small. 

2.2. Tomonaga and Luffinger contributions 

The Tomonaga self-energy can be evaluated most easily, since all scattering particles move 
in the same direction. Thus, we just have to integrate the Fermi functions. For the right- 
moving particles ( p  > O), we have: 

At T = 0 the Fermi functions just fix the integration region and we get in accordance with 
[41 

for small Itp[ and Io(. The integral over the Fermi functions can be done by elementary 
means, even for T # 0 if ksT << 1. A simple pole in the self-energy yields a splitting into 
two bands, their separation depending on the strength of the pole. For the Hubbard model 
in infinite dimensions there is no momentum dependence and the appearance of a 1 fo term 
in the self-energy signals a Mott-Hubbard gap [20]. Here, however, the pole structure is 
due to Tomonaga processes, which cannot open a gap. This can also be seen in expression 
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(12), which vanishes at the Fermi momenta. The resulting Green's function can be written 
as 

) (13) 
1 + -  1 ='( t G:(w ) - o+ - Q - C,T(O+) 2 U+ - U-&,, w+ - u+tp  

with the renormalized Fermi velocities 
I U  

v * = l f - -  
&2n' 

The new excitation energies correspond to the spin- and charge-density excitations in the 
weak-coupling limit [I]. Thus, expression (13) can be interpreted as a pole approximation 
of the exact spectral function, which has square-root singularities at w = (1 i V / 2 a )  e,, 
[211. 

In order to get the full information for the Hubbard model we also need CL.  The 
evaluation of this diagram can be done by elementary means-in the low-temperature limit. 
The resulting expression is complicated, but for T = 0, [PI. l f p l ,  101 << 1 it simplifies to 

with U = U * / ( 4 ~ z ) ~ .  
Due to the logarithm in expression (15). the properties of the corresponding spectral 

function are now characterized by a branch cut instead of poles. For couplings that are not 
too large we have 

(16) 
1 W l w l  - 141) -- ImG,L(w+) 2 U 
z (0 - e p )  { I  - ulnl(t,Z - ~ 2 ~ 1 1 ~  

which can be interpreted as a logarithmic correction of the power-law behaviour in the exact 
spectral function of the Luttinger model [21], 

Following Luttinger [le], it is not too difficult to show that the momentum distribution 
function np  in second-order perturbation theory is given by 

Similarly one obtains for the density of states for the Luttinger contribution: 

For both functions, nf and pL(w),  the expected power-law behaviour is approximated by 
relation (17). 

The decrease of weight in the density of states (19) for small w can also be understood 
by a different argumentation. Neglecting the contribution of ImC, an infinite slope of Rex 
with respect to w yields a decrease of weight in the spectral function. This effect becomes 
largest for frequencies close to the excitation energies. The new excitation energies for 
ReXL are found to be at w = Q. the divergences of aReZ/aw at w = ftp. Thus the 
decrease of weight in the density of states can be expected to be largest for w c 0. 
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2.3. Comparison to the numerical result 

Combining the results of the last sections in making use of the equations (9). (12) and (15). 
the analytical result for ImE in second-order perturbation theory can be written as 

which is valid for 101, Itp[, Ipl (< 1 and zero temperature. In figure 3, this expression 
is compared to the numerical result for ImZ of the Hubbard model. Although the 
Hubbard model has a cosine dispersion instead of the linear dispersion used in the analytic 
calculations, both curves agree excellently even for IwI c 0.5. Not only the linearity due to 
Luttinger processes, but also the weighted %-function peaks are reproduced by the numerical 
result. Since both properties can be easily detected from numerical data, the second-order 
approximation combined with the fast Fourier technique form a reliable tool for a detection 
of Luttinger-liquid behaviour. 

At first sight, the analytical expression for the real part of Z gives just a fair fit (compare 
figure 4). The main difference, however, is linear in w - cp. The missing correction would 
just yield a renormalization of the the coupling constant and the Green’s function, since 

1 

w+ - tp  - E, (w ) +constant x (U+ - Q) 
1 1 

G(*)(wt) = 
(2) + P 

(21) - - 
1 +constant w+ - - (1/(1 +constant)) $,*)(U+)’ 

Thus, its neglect does not change the qualitative behaviour of the Green’s function. 
Though the self-energy C”’ can be expressed in terms of elementary functions, the 

investigation of the spectral function for the Hubbard model by analytic means is much 
more complicated due to the interplay of the different terms in equation (9). especially if 
p # 0. A discussion of the full spectral function by analytic means would become fairly 
long and less instructive than the presented investigation of the separate contributions. This 
is mainly due to the fact that the different contributions from the self-energy no longer add 
in a simple way. For a more detailed discussion see [22]. Here, we prefer to handle the 
complete spectral function numerically instead. 

3. The perturbation result for the spectral density 

We will calculate. the density of states p‘*)(o) numerically for the cosine dispersion, by a 
method based on the technique derived in [ 141 and [22] .  Making use of the equations (3) 
and (4), one finally obtains for p = -0.2 and U = 2 the density of states presented in 
figure 5. 

The infrared behaviour of the exact density of states for the one-dimensional Hubbard 
model is known: p(w) a Iwln, where (Y 2 U in the weak-coupling limit [9].  This should 
produce a dip in the density of states curve at w = 0, however in figure 5 only sharp features 
are seen, which do not resemble a logarithmic depression of the density of states we expect. 
This defect arises as the Umklapp term no longer fits in the geometry of the Fermi surface 
for /A # 0. So, one has to add a constant to Rex in order to eliminate this fault. This can 
be thought as a renormalization of the one-particle energies. Here, the constant has to be 
chosen in such a way that the particle number is not changed by the interaction, i.e. the 
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i -1 

0 

Figure 3. Comparison of the numerical data (crosses, dotted line) for Im $'(wt) to the analytic 
expression (20) (solid line). In both figures we chose U = 1. and p = 7x116 which corresponds 
lo tp = -0.20 for p = 0 in (a), and to Cp = -0. I O  for p = -0.1 in (b). The numerical data 
reproduce very well lhe typical properties of Im E: ill IineKity for frequencies close to C,, 
and the 8-function contribution due to the 'ioomonaga process (the &function contribution is not 
shown in the analytic curve). 

self-energy. The resulting renormalized density of states is in accordance with Luttinger's 
theorem [I51 and the correct density of states is shown in figure 6. 

Though we can only present a numerical result for p(o)  in figure 6, we expect the 
same logarithmic approximation of the power-law behaviour mentioned above, as it has 
been derived analytically for the Luttinger processes (equations (17) and (19)). Since both 
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Figure 4. Comparison of the numerical data (crosses) for Re CF’(o+) to the analytic result 
(solid line). In this f i g w  we chose p = Sn/8> p = 0 which corresponds to e,, = 0.38. 
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Figurc 5. The density of states p ( o ) .  calculated numerically without renormalization. The 
selfenergy has been calculated for p = -0.2. 

Luttinger and backscattering processes contribute equally to the self-energy (9), the critical 
exponent in equation (17) has to be taken twice. Thus, second-order perturbation theory 
yields a critical exponent which we estimate to be four times as large as the exact value. With 
respect to a quantitative agreement, the perturbative result should not be overemphasized. 

The weight of the spectral density is also strongly reduced in the vicinity of o = -2p. 
This second minimum can be easily understood as a consequence of the misfit between X u  
and E‘ (S), (9). following the argumentation given i n  the preceding section, and recalling 
that most of the weight in the spectral function is centred around o = f p  in the weak- 
coupling limit. 
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Figure 6. 
procedure. The self-energy has been calculated for !I = -0.2. 

The density of states p(w). calculated numerically using the renormalization 

4. Conclusions 

We have investigated the perturbative approach to systems of interacting fermions in one 
dimension. The classification of scattering processes we can use in this case enables us 
to determine its range of validity and to localize its defects. For the Hubbard model our 
analysis yields the following results. 

For the general case the perturbation results are reliable and can be used to get an insight 
into the qualitative behaviour of the model. Deviations from Fermi-liquid behaviour can be 
detected from the numerical data for the self-energy and from the density of states, if one 
renormalizes the real part of the self-energy correctly in order to keep the particle number 
constant. Also the separation of spin- and charge-density excitations can be detected easily 
from the numerical data. However, the insulating property of the Hubbard model cannot be 
reproduced by perturbation theory. 

We would think that in higher dimensions perturbation theory will give qualitatively 
correct results since in the general case a Fermi-liquid behaviour is expected [4]. This is 
exactly what this approach would construct. A problem will arise since both the particle 
number and the shape of the Fermi surface will change, due to the fact that Re Ej (w = 0) 
will depend on the Fermi momentum 5,. One way of circumventing this problem is to 
include the real part of the self-energy for w = 0 as an additional part to the kinetic energy 
and to reach self-consistency by keeping the particle number fixed, as in the onedimensional 
case. Only in the many-band case will this lead to complications since the self-energy is 
certainly not ‘band-diagonal’. 

The simple perturbation approach will fail to describe the exceptional behaviour of the 
model when particle-hole symmetry is present. This may occur together when parts of the 
Fermi surface are nested and deviations from Fermi-liquid behaviour can be expected. 

Thus, a naive use of the perturbation expansion for systems of weakly correlated 
fermions may lead to severe misinterpretations. There are special problems with the Hubbard 
model, since all scattering processes have the same strength. This is certainly not realistic 
and would change if one could renormalize its coupling constants as is done in the one- 
dimensional case. 
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